Long ligands reinforce biological adhesion under shear flow

نویسنده

  • Aleksey V. Belyaev
چکیده

In the present work the computer modelling was used to show that longer ligands allow biological cells (e.g. blood platelets) to withstand stronger flows after their adhesion to solid walls. Mechanistic model of polymer-mediated ligand-receptor adhesion between a microparticle (cell) and a flat wall was developed. Theoretical threshold between adherent and non-adherent regimes was derived analytically and approved by the simulations. These results lead to deeper understanding of numerous biophysical processes, e.g. arterial thrombosis, and to the design of new biomimetic colloid-polymer systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability.

The mechanics of leukocyte (white blood cell; WBC) deformation and adhesion to endothelial cells (EC) has been investigated using a novel in vitro side-view flow assay. HL-60 cell rolling adhesion to surface-immobilized P-selectin was used to model the WBC-EC adhesion process. Changes in flow shear stress, cell deformability, or substrate ligand strength resulted in significant changes in the c...

متن کامل

Role of P-selectin and leukocyte activation in polymorphonuclear cell adhesion to surface adherent activated platelets under physiologic shear conditions (an injury vessel wall model).

Carbohydrate moieties on leukocytes adhere to activated platelets via P-selectin under static binding condition studies. We characterize polymorphonuclear cell (PMN) surface interactions with surface adherent platelets and the PMNs response, under physiologic flow conditions corresponding to a shear of 100 s-1, in an in vitro flow chamber. Fluorescent labeled PMNs with red blood cells were draw...

متن کامل

Defining extracellular integrin alpha-chain sites that affect cell adhesion and adhesion strengthening without altering soluble ligand binding.

It was previously shown that mutations of integrin alpha4 chain sites, within putative EF-hand-type divalent cation-binding domains, each caused a marked reduction in alpha4beta1-dependent cell adhesion. Some reports have suggested that alpha-chain "EF-hand" sites may interact directly with ligands. However, we show here that mutations of three different alpha4 "EF-hand" sites each had no effec...

متن کامل

Catch bonds govern adhesion through L-selectin at threshold shear

Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas h...

متن کامل

Glycoprotein (GP) Ib-IX-transfected cells roll on a von Willebrand factor matrix under flow. Importance of the GPib/actin-binding protein (ABP-280) interaction in maintaining adhesion under high shear.

Adhesion of platelets to sites of vascular injury is critical for hemostasis and thrombosis and is dependent on the binding of the vascular adhesive protein von Willebrand factor (vWf) to the glycoprotein (GP) Ib-V-IX complex on the platelet surface. A unique but poorly defined characteristic of this receptor/ligand interaction is its ability to support platelet adhesion under conditions of hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018